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For each f'€ C(I), let B (/) be the best uniform polynomial approximation of
degree at most ., and let e, (/) =/— B,(f) be the error function. Denote the set of
extreme points of ¢,(f) by E,(f). and assume that this set has precisely n + 2
points. If E(F) is the infinite triangular array of nodes whosc nth row consists of
the # + 2 points of E,(/). then the corresponding Lebesgue constant of order 1 1s
designated A,,(E(f:)). For certain rational and non-rational functions it is shown
that A, (E(F)) = 0(log ).

1. INTRODUCTION

Let =1 xj<xl< - <xl<xl, <1 be n+2 points in the interval
[ = |[—1,1]. Setting

X, = |xmnel, (1.1)

n [N

X={X, b o (1.2)
is an infinite triangular array of nodes |11, p. 88]. Let
{[:.")(,x)}l’.’fol (1.3)

be the fundamental Lagrange polynomials determined by (1.1), [I1, p. 88].
The Lebesgue function of order 7 + 1 determined by X is then

"+
Ay (Xoxy= N {170 (1.4)
i 0
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and the Lebesgue constant of order #+ | determined by X is defined
[11.p.89] to be

A, (X)= max A, (X x). {1.5)

A classical problem of approximation theory is to estimate A, , ,(X) as a
function of n and X.

Let C,, be the Chebyshev polynomial of degree n + 1. If g, (x) = x"
and B,(g,) is the best uniform polynomial approximation of degree < to g,
on /, then it is well known that the error function

e (g )x)=x""" =B (g,)x). X €l
satisfies
e (g )x)=1/2"C, ,(x). xel (1.6)

The set of extreme points, E£,(g,), of the error function is defined by

E(g,)=1{x€e(g)x) = le,(g)l}. | [|= max| |

Thus
G={E, (&)1, o (L.7)

is the infinite triangular array of nodes whose nth row consists of the n + 2
extreme points of C, . It is known |1, 4] that the Lebesgue constants deter-
mined by G satisfy

A, 1(G)=0(log(n + 1)). (1.8)
Although 4, , ,(G) does not equal |3. 9|
m)in A, (X))
the order of magnitude displayed by A, ,(G) in (1.8) is optimal in the sense
that there exists a positive constant a, independent of #, such that
O0<a<a,, (X)/logn+1) (1.9)

for every infinite triangular array of nodes of the type (1.2), [5.9, 11].
There are other infinite triangular arrays of nodes X with Lebesgue
constants satisfying

A, (X)y=0(og(n + 1)): (1.10)
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see, for example, [14]. Perhaps the most familar infinite triangular array of
nodes with a Lebesgue constant satisfying (1.10) is the array 7" whose nth
row (using the convention that the nth row contains n 4 2 elements) consists
of the zeros of C,,,. [1.4, 11].

The main objective of the present paper is to demonstrate a new class of
infinite triangular arrays of nodes with Lebesgue constants satisfying (1.10).
As was the case in (1.7), the origins of these arrays will be best
approximation problems.

2. PRELIMINARIES

Let C(I) denote the space of real-valued, continuous functions on the

interval [ =|[—1, 1], and let n, < C(I) be the space of real polynomials of
degree at most n. Denote, as above, the uniform norm on C({) by | - |I. For
each f€ C(I) with best approximation B,(f) from 7. let

en(N)X) =/ ()~ B(/)x).  xEL 2.1)
Then the set of extreme points £,(/) of e (/) is given by

E(f)={xE e, (/)x) = e (/. (2.2)

It is well known [2] that E (f) contains at least # + 2 points. Let
E={/,1; € C (2.3)

Suppose. for each n. that F (f,) contains precisely n + 2 points. Then the
class

E(F)=\(E, (/)i (2.4)

forms an infinite triangular array of nodes of the type given in (1.2).
Therefore (2.4) determines, for each n, a Lebesgue constant

A, (E(F)). (2.5)

The remainder of the paper will focus on the Lebesgue constants generated
by a certain class of rational functions in the manner prescribed by (2.3).
(2.4). and (2.5), and on Lebesgue constants generated by

Ef': {En(f)}nf s (26)

for certain functions f€ C(/). We note that (2.4) yields (2.6) whenever F in
(2.3) is a singleton; that is, when f, =/, n= 1, 2,....

The functions and corresponding infinite triangular arrays of nodes to be
subsequently analyzed will result in Lebesgue functions of optimal order.
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3. RATIONAL FUNCTIONS

Suppose that

la,t, (3.1)

ntn 1
is a (possibly unbounded) sequence of numbers satisfying

a, > 2. = b 2 (3.2)

M
Let

ro(x)=1/(a, - x), xEe |\l (3.3)

n

Then »" " "(x) > 0 for x € /. and consequently
E,(r)=1x€ e, r)(x)|=le,r,)| (3.4)

n n

contains precisely n + 2 points. 1f

R=1{ri, - (3.5)
then
ER)={E,(r ), (3.60)
determines the Lebesgue constant
1, (E(R)) (3.7)

The principal result of Section 3 is the following theorem.

Tugorem 1. Let ja,i, | satisfy (3.2), and let r, be defined as in (3.3).
I/ R=1r,\) |.then the Lebesgue constant defined in (3.7) satisfies
A, (E(R))=0(log(n + 1)). (3.8)
Prior to effecting the proof of Theorem 1. the statements of two lemmas
are needed.

LEmMmA 1. Lert

where

—l =g <ty <<y <t, =1L (3.10)
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Let
n+1—k
21 cos LN k=0 Lot 4 1
n+ 1
and
—k
CZZCOS(HI ‘)n. k=0, 1.1 (3.11)
F
Then
i <Ly, k=1l...n (3.12)

FtgH

We note that {z}}{;", are the extreme points of C, . and that ({/{} , are
the extreme points of C,. Lemma | is an immediate consequence of |13.
Theorem 3.3|. The superscript notation employed in Lemma | was used (o
emphasize the dependence of E (r,) on n. Hereafter this dependence is
assumed. and consequently, except in cases of emphasis, the superscripts are
omitted.

LEmMa 2. Ler E (r,)= ;{1 be the extreme set defined in (3.4) and
(3.9). Define w, by

il

)= (=1 (3.13)
i 0
Then
0<Cfwll/lwifr)] < Cy < + 0. i=0.1..on+ 10 (3.14)
and
0 < Cowptlwit;, )€ Cy < +oo. i=0lo.on  (3.15)

where C,. C,.C,. and C, are positive constants that are independent of n.

Lemma 2 is an immediate consequence of expressions (2.26) and
(2.28%-(2.31) (a=a,) in [6].

Proof of Theorem 1. Let x€l, x+1t,,j=0,1l...n+ 1. As in Lemma 1.
let E (r,)=1{f ;. t,. t,.h with ordering (3.10). Suppose that
t, <x <t ,.where O <k n Then (3.14) implies that

w,(x)
(x — 1) wi{t)

'gcb =0, lun+ 1. (3.16)
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where C, 1s independent of n. Thus from (1.4). (3.13). and (3.16).

n-1 " (,\”)
/{n+ ER,X):\ " - ‘
l( ( ) 1‘—-0 (\ - [l) w:l(tl)
, w (x)
<5C,+ N
SO A e e |
N / ) (3.17)
i ko (\7' ti) wn(tl)‘
where as usual > 7, 8, =01if r > 5. Let
ko2 .
[= A\ (¥ ] (3.18)
T e ) wl) ]
and
l': \" ) H.u(v\‘)’ } . (3.]9)
i Tw 2 (.\' - li) Wn(li) i
Now equalities (2.24) and (2.28) of |6] imply that
T 2 e 5 I
p Umalnan = DG +lap - DGELAS 1
nla,—n+(a,—H""| =
< (ai — 1)1 - x| C,(x)] k\f 7 1
ﬁn i "\/7[1"
+ (1 —xH|CI0 ko2 1
+ (an )( X ) ”(’C){ \ . (320)
flﬂ n i1 !.\' - [i[
where
By={(a,— n+(a,— 1) (3.21)

Let /, be the first term on the right in (3.20), and let /, be the second term.
We first show that

1, =0(log(n + 1)). (3.22)

Since 1, < x < 1,,,.(3.12) implies that

(78]
(o)
(99}
—

[x — ;] > |x — ¢ i= 1 k—2, {3.21
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where {17 , are the extreme points (3.11) of C,. From (3.20) and (3.23).

(@, + 1) (7 = D Ch))
nﬂn i1 |X - ti‘
< (@, +1) 7" = 1) o)
h nﬂn l——l ‘x - cl'
n*(a, + 1) '\’:2 (T — 1) Clx)|

N BT ST (3-24)

I, =

Now (1.7), (L1.8), (3.21), and (3.24) imply the validity of (3.22). Returning
0 (3.20).

(@ D) G KT

[, =

Ba X — 1]
@D =) [ G G [ RS
h B, 20+ 1) 2(n—1) ,-—' Ix -t
‘ (3.25
(az )l ? k (\C - I)Cn I(X‘),
2()1—]),3,,, ) |x — ¢,
(@~ 1" AT = 1) Gy )
2(n+1)ﬁn i-1 ‘X;Iii‘ ’
As in (3.23), (3.12) implies that
|x—t>|x—z,, i= 1l k—2. (3.26)
On the other hand, if —1=y, <y, <--- <y, , <y, =1 are the extreme
points of C, _,. then (3.12) implies that
&<y [=1,2¢con—1. (3.27)
Thus (3.27) and (3.23) imply that
lx —£;1> [x =yl i=1,2.. k=2 (3.28)

Utilizing (3.26) and (3.28) in (3.25) results in

@) ) A (= 1) Cl ()]
l 2(n+ 1} 8, | ix*zi*l”(l—zl'2+l)cr/1/~l(zi+1:”

(a,— 1) — 1) 7 (= 1) C, ()]
2(’1“1)1821 i1 ‘X‘_VH ]/V)Cn l(vi)‘.
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This inequality, (1.7), (1.8), and (3.21) now imply that

I, =0(log(n + 1}). (3.29)
Combining (3.22) and (3.29), we have that

I =0(og(n + 1)) (3.30)

whenever 1, <x <t,,,, 0k n The expression I given in (3.19) can be
treated in a manner similar to that given for /, and consequently

[ =0(log(n + 1)). (3.31)
Thus (3.30) and (3.31) imply that
A, ER), x) = 0(log(n + 1)), xel {3.32)

Equalities (1.4), (1.5), and (3.32) now imply the conclusion of
Theorem 1. |

COROLLARY 1. Ler the nth row of the infinite triangular array of nodes
A be given by

ni

A =gt

where tg=— 1.1, , =1, and |t}

ey are the n zeros of

n(al — 1) C(x) + (a,x — 1) Cli(x) = 0. (3.33)
Then A, (A)=0(log(n + 1)).

Progf. Since A = E(R) |10, p. 35|, the result is immediate. 8
COROLLARY 2. Let a > [ > O be constants not depending on n. Define
U fx)y=1/{a(n+2)+ 2 —x), NC,

and

Vx)y=1/(8(n+2)—2-x), xEel, (3.34)

where n is large enough to ensure that the denominator of V , doesn’t vanish
onl. Let E (U,) and E (V,) consist of

=y <uy <uy <o <uy <y, =1

and
—l=v,<y, <<~ <, <v,,,, =L (3.35)
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If the infinite triangular array E(U) has nth row E, (U,), and the infinite
triangular array E(V) has nth row E (V,), then

Ay (U) = 0(log(n + 1))
and
A, (V)= 0(og(n + 1)).

Corollary 2 follows immediately from Theorem 1 with the appropriate
choices of a,, in (3.3). The rational functions U, and V', play significant roles
in the next section, and are further analyzed in [8].

4. A CLASS OF NON-RATIONAL FUNCTIONS

The main objective of the present section is to prove, for every element fin
a certain class F of functions, that

Ay, (Ej) = Ollog(n + 1)), (@.1)

where £, is given in (2.6).
DerFiniTION 1. Let F be the set of all functions f€ C*([) satisfying

(a) S P(x)#0 on I,

and

1 f(n+2)(x) 1 ’
o ey o o

for all n sufficiently large, where a > f > 0 are constants possibly depending
of f but not on n.

(b)

We observe that f5(x)=e°", §# 0. is an element of F. Strong unicity
constants for functions f€ F are analyzed in [8], and a number of properties
of F are itemized in that reference. Several lemmas that aid in proving (4.1)
now precede the proof of the main theorem of Section 4.

LEmMA 3. Let f€F with " P (x) - f"* P (x)>0o0n L If

E,(f) = {X0s X 1oes X0 Xy s (4.3)

where

—l=xy<x; < <x, <x,,,, =1, (4.4)
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then
Zp Uy <X Uy <G k=1, 2.1 (4.5)

where E (U,)= 1w\t and E,(V,)={v,4}", are as in Corollary 2. and

where {z,\11) and |\, are given in (3.12).

Lemma 3 is proven in [8].

LEmMA 4. Let U, and V, be the rational functions of Corollary 2, with
extreme sets E (U,) = lu,\1') and E(V,) = {v,\}},. Then

t=0-"
vy U, < C/nt (=&}, k=1 2.1 (4.6)
where C is a positive constant not depending on n, and where

u, <& <uy.

Inequality (4.6) essentially follows from (8, (2.24)]. Lemma 4 implies that

max v, - u, = 0(1/n?). (4.7)

< ksn

This is to be contrasted with

max |{, —z,|=0(1/n). (4.8)

Is<ksn

The additional sharpness displayed in (4.7) as contrasted to (4.8) will be
subsequently exploited.

LEMMA 5. Ler {u,\1t) and {x,|}', be the extreme sets given in (3.35)

and (4.4), respectively. Then

n+1 nil

| L u; — ;| < C | |0 X =00 e+ L (4.9)
I J
J#i jii

where C is positive and independent of n.
Proof. From |8, Lemma 3|,

[y =y g = x4 13— X — g

L24/n jx; - X H X - X

= (1 +24/n)lx, — x;., i=0. laon+ Li#]
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where A4 is a positive constant not depending on »x. Since
sup, |1 + 24/n]" < 400, (4.9) follows.

LEMMA 6. Let {u, )1}, lv, ity and {x,}}2) be the extreme points given
in Lemma 3. For x € I, select k such that x, < x < x,,,. Then

n+1 ( n+l n+1
Ty —xi<clyma—a. ) || x—ul+]] \xfu/j:.,
J-=0 ! j=0 ji-0

Jtk+1

(4.10)

where u, , <&, <., k=0,.,n, and where C is a positive constant not
depending on n.

Proof. From (4.5), for k >0

k k
[[1x=xI< ] Ix—ul (4.11)
jo io
Thus if k=n, (4.11) and the fact that |x —u,, ,|=|x—x,.,| combine to
imply (4.10). Therefore we may assume that k<n—1. Thus
k+2<j<n+ 1. Then

x~xf:M~ufP+fn% (4.12)
' ' Uj—x
Now (4.5) implies that
X, — U, v.— U,
N ST ppag<nt L (4.13)
Up—Xx Z;— Gy
Therefore it follows from |8, Theorem 5. (2.19)] that
n “1 . — uj
N M < 4o, (4.14)

P2 2 G
where M is a positive constant not depending on n. Hence (4.12), (4.13), and
(4.14) imply that

I n+1

| e L1 v—w [l ( Pt

2 Je k42 k+2 P Sk

f
n+1 n+
v, —U;
<] prmwlen | N
J=k+12 = ko~ ,'_glul
n+l

<expM) || jx—ul. (4.15)

Jok+2
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For 0 <k<n—1,(4.11) and (4.15) imply that

nal 7 -l
= vl <dx —xlleo®dn] [ Ix -y
J0 ion

ikl

n-l noel

SM (g —u ) H (‘X*u‘,-\)+ II (lx —u;]) |,
io0 io0
Jrhoat

where M =exp(M). This last inequality, (4.5), and (4.6) now imply
(4.10). B

LemMa 7. Let (x|, be the extreme points given in Lemma 3. Then

nel

2" || fx - x;[=0(n). (4.16)
in

The proof of this lemma follows from the proof of |8. Theorem 8.

LEMMA 8. Suppose that |x,|}",) are the extreme points given in
Lemma 3. Let x, <x <k, . k=0...n Then

3

k
N - x) < Coln 4+ 1) log(n + 1) k= 3.0 (4.17)
/

and

.
where C, and C, are positive constants not depending on n.

Proof. We prove only (4.17): the proof of (4.18) is similar. For
<< hk—2,

X *Y,‘)H’ Ziv
<n+1—k‘) (II*‘/)
= Vi COS M
n+ 1 1
k=G4
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where w; is between (n+1—k)/(n+ 1)7m and (n—j)/(n+ 1)n. Since
1<j<hk—-2<n-2,

W, M

J
> .
n+ 17 n4l

sin

where M > 0 is a positive constant not depending on #n. Therefore

k-2 k-2
\ 1 < N\’ 1
X TX T Tz
2 k-2
<(n+1) \ 1
Mrn = k—(j+1)

<Cyn+ 1) log(n+1). N

We are finally in a position to prove the main theorem of the present
section and the principal theorem of the paper.

THEOREM 2. Let F be the class of functions given by Definition 1, and
let E, be the infinite triangular array of nodes whose nth row is

En(f) = {XO"xl aneee xn‘xn& 1 }'
the extreme points of e, (f). Then
A, (Ep)=0(og(n + 1)). (4.19)

Proof. First assume that f€ F satisfies /"' "(x)- " 2(x)> 0. xE€ I.
Let U,(x) be given by (3.34), and {u,};”, by (3.35). We assume that £, (/)
has ordering (4.4), and that

X # X, [=0,1,..,n+ 1.

Let w,(x), x € I, be given by (3.13) with a, =a(n + 2) + 2. Then Lemma 5
and equality (2.29) in [6] imply that

n+1

n+1

X—Xj |<C X*.’Cj
,I:L Xp—x; | ‘,U) Up—u;
j#i J#i
C nitl
=Tty Lo
Jxi

6407392 2

C-m2" YYar— 1" +a, ")
S onl(a,—n+(a,— 17

Jj=0
e

[ 1x =l

(4.20)
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Applying (4.16) to (4.20) establishes that

XY <. (4.21)

where C, does not depend on n. From (1.4)

n+1 4
Y—\
A (E,x)=\ (4.22)
e im0 ,I ]n X;— X;
J#i

Suppose that x € |x,, x,, ], where 0 < &k < n. Then (4.21) and (4.22) imply
that

k 2 n+l X X,
Ay (Enx)<SC+ N !
P oo 1 XX
)
" nitl ‘ Y X
+ N ] == (4.23)
Pki2 400 [x,-—x/.
jri
where again Y ,8,=0if r > s. Let
k—:Z ntl I x —x.
L=> ] . (4.24)
g0 ‘x( X
Jii
and
7n n+ \7“
L= Y 1] al (4.25)
i ke o0 | XX
jri
Again from Lemma 5,
nil k-2 1
I, < [x—x;) N — -
' ;]L : b= xg []; F()I;:z X — Xy
nitl A 2 1
<C ix—x] N
- 1]I0 ! l—— ‘x—xlll—ll 0/:1» iiui"
n+1 A— 1

C 1l e

J0 i ‘\736“}‘}'1(“){
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An application of Lemma 6 to this inequality results in

_ k-2 1
I, <C [\‘ ————————————J
' o I = xg] [ wa(uy)]
1 , Vlj‘l nfl ?
=g T v—wl+ [ lx-ul
‘ j=0 J=0 ’
Jrket
_ k—2 1
<C[\‘ —J
ST LA =l wauy)]

1
- j;(l—éiH)uw;uﬂwn(x)»E

—Clha-d.a Y

k72 1

1 [wall
Cx =X D)
[

i i1 ’X*XHW(H)!S

+w, ()]

Thus (3.14) and (4.5) yield

c_sc : o
? ( ék+1) = ‘X—X[|
k-Z 1 ,

i l ‘x_uhll“""(u)“

+ 1w, ()] N

Inequalities (4.17) and (3.15) now imply that

k~2 1 2
w (ul#l M

I, < log(n + 1)+ C,w,(x)| N

Tolx =

Now Corollary 2 implies that
I, =0(log(n + 1)).
By using a similar argument (e.g., (4.18)), one can show that
I, =0(log(n + 1)).
Therefore if /" "(x) - f"*?(x) > 0, x € I, then
Awi 1 (Efy x) = 0(log(n + 1)), xel

Now equality (1.5) implies conclusion (4.19).
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To  complete the proof of Theorem 2. assume  that
S (x) - U P(x) < 0, x € I By replacing /by (—f) if necessary. we may
assume that f"""(x)> 0. Define A by h{x)=(—1)"""'f(—x). Clearly
A" D(x) > 0, k"2 (x) > 0,x € I, and h € F. Therefore the first part of the
proof establishes that

An . I(Eh) = O(lOg(ﬂ + l))

Let —l=7,<7,<---<1,<71,,, =1 be the extreme points of e,(h). If
—l=x,<x, <.~ <x,<x,,,=1 are the extreme points of ¢,(f). then
T, =—X,, . 1=0, l...,n+ 1. This observation ensures that

An+ I(Eh) :/1” + I(Ef)-«

completing the proof.

5. CONCLUSION

In the preceding sections Lebesgue constants for certain infinite triangular
arrays of nodes are examined.

It is shown for a certain class of rational functions R = {r, |, | that the
corresponding infinite triangular array of nodes whose nth row consists of
the n 4 2 extreme points of e,(r,) vields an asymptotically optimal Lebesgue
constant.

This result is subsequently used to prove for every function f/ in a certain
class of non-rational functions F that the Lebesgue constant constructed
from the infinite triangular array of nodes whose nth row consists of the
n + 2 extreme points of e,(f) is also asymptotically optimal. In particular,
the infinite triangular array of nodes whose nth row consists of the extreme
points of the error function for e®%, &+ 0. yields a Lebesgue constant of
order log(n + 1).
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